0

Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Character of VAWT Wakes: An Experimental Investigation for H-Shaped and Troposkien Architectures

[+] Author Affiliations
G. Persico, V. Dossena, B. Paradiso

Politecnico di Milano, Milano, Italy

L. Battisti, A. Brighenti, E. Benini

Universitá di Trento, Trento, Italy

Paper No. GT2016-57762, pp. V009T46A015; 12 pages
doi:10.1115/GT2016-57762
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME

abstract

In this paper the aerodynamics and performance of two Vertical Axis Wind Turbines are discussed, on the basis of a wide set of experiments performed at Politecnico di Milano (Italy). A H-shaped and a Troposkien Darrieus turbine for micro-generation, characterized by the same swept area and blade section, are tested in real-scale. Performance measurements show that the Troposkien rotor outperforms the H-shaped turbine, mostly related to the larger midspan section of the Troposkien rotor (resulting by the constraint of constant swept area) and to the non-aerodynamic struts of the H-shaped rotor. These features are consistent with the character of the wakes shed by the turbines, measured by means of hot wire anemometry on several surfaces downstream of the models. The morphology of H-shape and Troposkien rotor wakes exhibit relevant differences, especially in the three-dimensional character and time-periodic evolution in the blade tip region. In particular, large-scale vortices dominate the tip region of the wake shed by the H-shape turbine; these vortices pulsate significantly during the period, due to the periodic fluctuation of the blade aerodynamic loading. Conversely, the highly tapered shape of the Troposkien rotor prevents the onset of tip vortices, but also induces a dramatic spanwise reduction of tip speed ratio, promoting the onset of local dynamic stall marked by high periodic and turbulent unsteadiness in the tip region of the wake. The way in which these mechanisms affect the wake evolution and mixing process for the two classes of turbines is investigated for different tip speed ratios, highlighting some relevant implications in the framework of wind energy exploitation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In