Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Gaseous Admixtures on Cycles With Supercritical Carbon Dioxide

[+] Author Affiliations
Ladislav Vesely, Vaclav Dostal, Jan Stepanek

Czech Technical University in Prague, Prague, Czech Republic

Paper No. GT2016-57644, pp. V009T36A016; 9 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME


Supercritical carbon dioxide cycles are recently very perspective and they are researched all around the world. CO2 is an interesting medium for applications in many technologies, from nuclear energy through geothermal, solar and waste heat recovery systems. However, S-CO2 cycles have several issues which have to be researched, one of them being the presence of the so called pinch point in the heat exchangers design. Therefore, the Czech Technical University (CTU) conducts research on supercritical carbon dioxide cycles, which are focused on the effect of the gaseous admixtures in S-CO2 on different cycle components. The research is primarily focused on the pinch point shift within heat exchangers caused by gaseous admixtures. Previous work has shown that the pinch point can be removed with the addition of small amounts of another gases. However, it is also important to describe the effect on the performance of the cycles. This is the main topic of this paper. One of the reasons for this research is the positive effects on components are possible. The first part of the study is focused on the development of computational code for calculation of the basic S-CO2 cycles with mixtures. The second part of the study is focused on the calculation of basic cycles for binary mixtures. The calculation will be performed for pure CO2 and some binary mixture. He, CO, O2, N2, Ar will be used for the calculation as the most common admixtures, furthermore H2, CH4 and H2S will be used as well. The last part of the study will be focused on the optimization of individual cycles for different amount of admixtures in CO2. The result of this study will define the optimum ratio of admixtures and description of their effect on cycle efficiency.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In