0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis and Comparison Study of Transcritical Power Cycles Using CO2-Based Mixtures as Working Fluids

[+] Author Affiliations
Jiaxi Xia, Jiangfeng Wang, Pan Zhao, Dai Yiping

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2016-57132, pp. V009T36A011; 10 pages
doi:10.1115/GT2016-57132
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME

abstract

CO2 in a transcritical CO2 cycle can not easily be condensed due to its low critical temperature (304.15K). In order to increase the critical temperature of working fluid, an effective method is to blend CO2 with other refrigerants to achieve a higher critical temperature. In this study, a transcritical power cycle using CO2-based mixtures which blend CO2 with other refrigerants as working fluids is investigated under heat source. Mathematical models are established to simulate the transcritical power cycle using different CO2-based mixtures under MATLAB® software environment. A parametric analysis is conducted under steady-state conditions for different CO2-based mixtures. In addition, a parametric optimization is carried out to obtain the optimal design parameters, and the comparisons of the transcritical power cycle using different CO2-based mixtures and pure CO2 are conducted. The results show that a raise in critical temperature can be achieved by using CO2-based mixtures, and CO2-based mixtures with R32 and R22 can also obtain better thermodynamic performance than pure CO2 in transcritical power cycle. What’s more, the condenser area needed by CO2-based mixture is smaller than pure CO2.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In