0

Full Content is available to subscribers

Subscribe/Learn More  >

Liquid CO2 Formation, Impact, and Mitigation at the Inlet to a Supercritical CO2 Compressor

[+] Author Affiliations
Melissa Poerner, Grant Musgrove, Griffin Beck

Southwest Research Institute, San Antonio, TX

Paper No. GT2016-56513, pp. V009T36A005; 10 pages
doi:10.1115/GT2016-56513
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME

abstract

Cycle efficiency is one of the critical parameters linked to the success of implementing a Supercritical Carbon Dioxide (sCO2) power cycle in a Concentrating Solar Power (CSP) plant application. Ambient conditions often change rapidly during operation, making it imperative that the efficiency of the plant cycle be optimized to obtain the maximum power production when sunlight is available. Past analyses have shown that operating the cycle at the critical point provides the optimum efficiency for dry operation. However, operation at this point is challenging due to the dramatic changes in thermophysical properties of CO2 near the critical point and the risk of the fluid having a two-phase, gas-liquid state. As a result, there is a high likelihood that liquid can form upstream of the primary compressor in the sCO2 power cycle. This paper explores the potential for liquid formation when operating near the critical point and looks at the influence of liquid on the compressor performance. The performance impact is based on industry experience with wet gas compression in power generation and oil and gas applications. Options for mitigating liquid effects are also investigated, such as upstream heating, separation, or compressor internal controls (blade surface gas ejection). The conclusions of the paper focus on the risk, estimated impact on performance, and summary of mitigation techniques for liquid CO2 entering a sCO2 compressor.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In