Full Content is available to subscribers

Subscribe/Learn More  >

Design of Spatial Non-Anthropomorphic Articulated Systems Based on Arm Joint Constraint Kinematic Data for Human Interactive Robotics Applications

[+] Author Affiliations
Hyosang Moon

California State University Fullerton, Fullerton, CA

Nina P. Robson

California State University Fullerton, Fullerton, CAUniversity of California Irvine, Irvine, CA

Paper No. DETC2015-46530, pp. V05CT08A005; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5C: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5714-4
  • Copyright © 2015 by ASME


The design of human interactive robotic systems requires additional considerations compared to conventional robotic designs to take into account human factors. In this paper, a recently developed linkage kinematic synthesis incorporating higher order motion constraints is utilized to the synthesis of a five degree of freedom serial TS linkage for human interactive applications. The T represents a universal two degrees-of-freedom shoulder, while the S defines a spherical three degrees-of-freedom wrist joint. The desired hand kinematics and its time derivatives can be obtained by a motion capture system as well as from the hand-object/environment contact geometries at two task locations. In order to determine the design parameters (i.e., locations of the base/shoulder and moving/wrist pivots, as well as the link length connecting these joints), position, velocity and acceleration constraint equations of the TS linkage are solved in the vicinity of the initial and the final reaching locations. The entire robotic joint trajectories are formulated via minimum jerk theory to closely approximate human natural hand profile with an elbow joint constraint. In this manner, the TS linkage system can be designed to guarantee to reproduce the natural human hand kinematics with the minimum amount of information about the desired hand kinematic specifications. The applicability of the proposed technique was verified by designing a TS linkage system from a captured human data, and then comparing the generated end-effector trajectory with the human hand motion trajectory, which show promising results.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In