0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Swirl Ratio Impact on In-Cylinder Flow in a SIDI Optical Engine

[+] Author Affiliations
Hanyang Zhuang, David L. S. Hung

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China

Jie Yang, Shaoxiong Tian

Shanghai Jiao Tong University, Shanghai, China

Paper No. ICEF2015-1160, pp. V001T03A019; 9 pages
doi:10.1115/ICEF2015-1160
From:
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4
  • Copyright © 2015 by ASME

abstract

Advanced powertrain technologies have improved engine performance with higher power output, lower exhaust emission, and better controllability. Chief among them is the development of spark-ignition direct-injection (SIDI) engines in which the in-cylinder processes control the air flow motion, fuel-air mixture formation, combustion, and soot formation. Specifically, intake air with strong swirl motion is usually introduced to form a directional in-cylinder flow field. This approach improves the mixing process of air and fuel as well as the propagation of flame. In this study, the effect of intake air swirl on in-cylinder flow characteristics was experimentally investigated. High speed particle image velocimetry (PIV) was conducted in an optical SIDI engine to record the flow field on a swirl plane. The intake air swirl motion was achieved by adjusting the opening of a swirl ratio control valve which was installed in one of the two intake ports in the optical engine. Ten opening angles of the swirl ratio control valve were adjusted to produce an intake swirl ratio from 0.55 to 5.68. The flow structures at the same crank angle degree, but under different swirl ratio, were compared and analyzed using proper orthogonal decomposition (POD). The flow dominant structures and variation structures were interpreted by different POD modes. The first POD mode captured the most dominant flow field structure characteristics; the corresponding mode coefficients showed good linearity with the measured swirl ratio at the compression stroke when the flow was swirling and steady. During the intake stroke, strong intake air motion took place, and the structures and coefficients of the first modes varied along different swirl ratio. These modes captured the flow properties affected by the intake swirl motion. Meanwhile, the second and higher modes captured the variation feature of the flow at various crank angle degrees. In summary, this paper demonstrated a promising approach of using POD to interpret the effectiveness of swirl control valve on in-cylinder swirl flow characteristics, providing better understanding for engine intake system design and optimization.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In