Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Diesel Pilot Ignition (DPI) and Reactivity Controlled Compression Ignition (RCCI) in a Heavy-Duty Engine

[+] Author Affiliations
N. Ryan Walker, Flavio D. F. Chuahy, Rolf D. Reitz

University of Wisconsin-Madison, Madison, WI

Paper No. ICEF2015-1128, pp. V001T03A016; 13 pages
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4
  • Copyright © 2015 by ASME


Due to growing interest in utilizing natural gas as an alternative fuel in internal combustion engines, a study on the use of natural gas for dual-fuel combustion strategies in a heavy-duty engine was performed to examine the diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) combustion strategies. In Part 1 of this work, the transition between the DPI and RCCI combustion regimes was studied via the direct control of the SOI timing. At the relatively rich condition of ϕ = 0.72, the performance of both combustion strategies was comparable. In Part 2 of this work, the effect of the equivalence ratio on each combustion regime was examined. It was observed that at richer conditions the performance of each combustion regime was similar. However as the conditions became leaner, the performance improved for RCCI combustion and was degraded for DPI combustion. In Part 3 of this work, the effect of fueling rate was explored at a relatively lean operating condition (ϕ = 0.52). It was seen that the fueling rate has little effect on the combustion performance as the engine load was increased. The strong influence of the equivalence ratio on the combustion performance of the RCCI and DPI combustion strategies indicates the both combustion regimes are recommended to engine applications with air handling systems which generate relatively rich in-cylinder conditions; for engine applications with air handling systems which allow for relatively lean in-cylinder conditions, the RCCI combustion regime is recommended.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In