Full Content is available to subscribers

Subscribe/Learn More  >

Engine Capability Prediction for SI Engine Fueled With Syngas

[+] Author Affiliations
Hui Xu, Leon A. LaPointe

Cummins, Inc., Columbus, IN

Paper No. ICEF2015-1043, pp. V001T03A006; 8 pages
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4
  • Copyright © 2015 by ASME


There are increasing interests in converting solid waste or lignocellulosic biomass into gaseous fuels and using reciprocating internal combustion engine to generate electricity. A widely used technique is gasification. Gasification is a process where the solid fuel and air are introduced to a partial oxidation environment, and generate combustible gaseous called synthesis gas or syngas. Converting solid waste into gaseous fuel can reduce landfill and create income for process owners. However it can be very challenging to use syngas on a gaseous fueled spark ignited engine, such as a natural gas (NG) engine. NG engines are typically developed with pipeline quality natural gas (PQNG). NG engines can operate at lean burn spark ignited (LBSI), or stoichiometric with EGR spark ignited (SESI) conditions. This work discusses the LBSI engine condition.

NG engines can perform very differently when fueled with nonstandard gaseous fuels such as syngas without appropriate tuning. It is necessary to evaluate engine performance in terms of combustion duration, relative knock propensity and NOx emissions for such applications. Due to constraints in time and resources it is often not feasible to test such fuel blends in the laboratory. An analytical method is needed to predict engine performance in a timely manner. This study investigated the possibility of using syngas on a spark ignited engine developed with PQNG. Engine performance was predicted using in house developed models and PQNG as the reference fuel. Laminar flame speed (LFS), adiabatic flame temperature (AFT) and Autoignition interval (AI) are used to predict combustion duration, engine out NOx and engine knock propensity relative to NG at the target Lambda values.

Single cylinder research engine data obtained under lean burn conditions fueled with PQNG was selected as the baseline. LFS, AFT and AI of syngas were computed at reference conditions. Lambda of operation was predicted for syngas to provide the same burn rate as NG at the reference Lambda value for NG. Analysis shows that, using syngas at the selected Lambda, the engine can have less engine out NOx emissions and less knock propensity relative to NG at the same speed and load. Modifications to fuel system components may be required to avoid engine derate.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In