0

Full Content is available to subscribers

Subscribe/Learn More  >

Combustion Trajectory Visualization Model for Study of Conventional and Advanced Direct Injection Combustion Modes

[+] Author Affiliations
Joshua A. Bittle

University of Alabama, Tuscaloosa, AL

Timothy J. Jacobs

Texas A&M University, College Station, TX

Paper No. ICEF2015-1031, pp. V001T03A004; 14 pages
doi:10.1115/ICEF2015-1031
From:
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4
  • Copyright © 2015 by ASME

abstract

Many of the approaches to diagnostics of in-cylinder spatially resolved quantities (such as equivalence ratio, temperature, speciation, etc.) require either optical engines or computational fluid dynamics. These approaches are expensive (time or money) and will likely never be practical for on-board use in the future. The market trend towards real-time control and consumer grade in-cylinder pressure transducers suggest that relatively simple modeling techniques based on cylinder pressure and other standard engine sensors are well situated to be a part of the future engine control schemes. This work expands previous efforts to calculate combustion trajectories (path through equivalence ratio vs. temperature plane) based on cylinder pressure measurements in near real-time.

This work incorporates the current state-of-the-art diesel fuel spray mixing models (Kattke and Musculus entrainment waves) and adds features to accounting for changing cylinder pressure, adaptive time step based on sampling rate of cylinder pressure, and optimizing spray axial resolution for reduced calculation time. Based on the predicted local fuel concentration, flame temperature and relating calculated heat release rates to the amount of fuel burned in each portion of the spray the combustion processes can be tracked to give a cumulative history of the ignition, subsequent mixing and heating/cooling that gives a picture of what combustion looks like on the equivalence ratio vs. temperature plane.

Various engine operating conditions are explored including conventional diesel operation with and without EGR as well as highly dilute late injection low temperature combustion at different injection pressures. The results obtained in this work give encouragement that this type of approach may enable future engine control using these detailed yet computationally simple approaches.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In