0

Full Content is available to subscribers

Subscribe/Learn More  >

Start-Up and Steady-State Performance of a New Renewable Hydroprocessed Depolymerized Cellulosic Diesel (HDCD) Fuel in Multiple Diesel Engines

[+] Author Affiliations
Eric Bermudez

US Navy, Annapolis, MD

Andrew McDaniel, Terrence Dickerson

US Navy, Patuxent River, MD

Dianne Luning Prak, Len Hamilton, Jim Cowart

US Naval Academy, Annapolis, MD

Paper No. ICEF2015-1083, pp. V001T02A008; 13 pages
doi:10.1115/ICEF2015-1083
From:
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4

abstract

A new Hydroprocessed Depolymerized Cellulosic Diesel (HDCD) fuel has been developed using a process which takes biomass feedstock (principally cellulosic wood) to produce a synthetic fuel that has nominally 1/2 cyclo-paraffins and 1/2 aromatic hydrocarbons in content. This HDCD fuel with a low cetane value (Derived Cetane Number from the Ignition Quality Tester, DCN = 27) was blended with naval distillate fuel (NATO symbol F-76) in various quantities and tested in order to determine how much HDCD could be blended before diesel engine operation became problematic. Blends of 20% HDCD (DCN = 45), 30%, 40% (DCN = 41) and 60% HDCD (DCN = 37) by volume were tested with conventional naval distillate fuel (DCN = 49). Engine start performance was evaluated with a conventional mechanically Direct Injected (DI) Yanmar engine and a Waukesha mechanical indirect injected (IDI) CFR diesel engine, and showed that engine start times increased steadily with increasing HDCD content. Longer start times with increasing HDCD content were the result of some engine cycles with poor combustion leading to a slower rate of engine acceleration towards rated speed. A repeating sequence of alternating cycles which combust followed by a non-combustion cycle were common during engine run-up. Additionally, steady state engine testing was also performed using both engines. HDCD has a significantly higher bulk modulus than F76 due to its very high aromatic content, and the engines showed earlier Start of Injection (SOI) timing with increasing HDCD content for equivalent operating conditions. Additionally, due to the lower DCN, the higher HDCD blends showed moderately longer Ignition Delay (IGD) with moderately shorter overall burn durations. Thus, the mid-combustion metric (CA50: 50% burn duration Crank Angle position) was only modestly affected with increasing HDCD content. Increasing HDCD content beyond 40% led to significantly longer start times.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In