0

Full Content is available to subscribers

Subscribe/Learn More  >

Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol

[+] Author Affiliations
Alex J. Nord, Jeffrey T. Hwang, William F. Northrop

University of Minnesota, Minneapolis, MN

Paper No. ICEF2015-1067, pp. V001T02A005; 9 pages
doi:10.1115/ICEF2015-1067
From:
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5727-4
  • Copyright © 2015 by ASME

abstract

Aftermarket dual-fuel injection systems in diesel engines using hydrous ethanol have been developed as a means to lower emissions from older diesel-powered equipment. However, our previous work has shown that the emissions benefits of currently available aftermarket intake fumigation injection systems can be inconsistent with manufacturer claims. Our current study evaluates a newly developed aftermarket dual fuel system that incorporates a novel fuel heating system and port fuel injection (PFI). This paper describes an experimental investigation of engine-out emissions from a John Deere 4045HF475 Tier 2 engine with port injection of 180 proof (90% ethanol by volume) hydrous ethanol. The engine was retrofitted with a custom fuel heat exchanger to heat the hydrous ethanol to a range of 46–79°C for helping to improve fuel vaporization in the intake port. PFI duration was controlled using engine speed and throttle position as inputs to achieve a desired fumigant energy fraction (FEF), defined as the amount of energy provided by the hydrous ethanol based on lower heating value (LHV) over the total fuel energy provided to the engine. Data was collected over a range of FEF with direct injected diesel for eight operating modes comparing heated versus unheated hydrous ethanol. Results of the study indicate that as FEF increases, NO emissions decrease, while NO2, CO, THC, and ethanol emissions increase. In addition, it was found that preheating the ethanol using engine coolant prior to injection has little benefit on engine-out emissions. The work shows that the implemented aftermarket dual-fuel PFI system can achieve FEF rates up to 37% at low engine load while yielding modest benefits in emissions.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In