0

Full Content is available to subscribers

Subscribe/Learn More  >

Gain-Scheduled ℋ-Control for Active Vibration Isolation of a Gyroscopic Rotor

[+] Author Affiliations
Fabian B. Becker, Stephan Rinderknecht

Technische Universität Darmstadt, Darmstadt, Germany

Martin A. Sehr

University of California San Diego, La Jolla, CA

Paper No. SMASIS2015-9119, pp. V001T03A029; 10 pages
doi:10.1115/SMASIS2015-9119
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5729-8
  • Copyright © 2015 by ASME

abstract

This paper deals with active vibration isolation of unbalance-induced oscillations in rotors using gain-scheduled H-controller via active bearings. Rotating machines are often exposed to gyroscopic effects, which occur due to bending deformations of rotors and the consequent tilting of rotor disks. The underlying gyroscopic moments are proportional to the rotational speed and couple the rotor’s radial degrees of freedom. Accordingly, linear time-varying models are well suited to describe the system dynamics in dependence on changing rotational speeds. In this paper, we design gain-scheduled H-controllers guaranteeing both robust stability and performance within a predefined range of operating speeds. The paper is based on a rotor test rig with two unbalance-induced resonances in its operating range. The rotor has two discs and is supported by one active and one passive bearing. The active support consists of two piezoelectric stack actuators and two collocated piezoelectric load washers. In addition, the rig is equipped with four inductive displacement sensors located at the discs. Closed-loop performance is assessed via isolation of unbalance-induced vibrations using both simulation and experimental data. This contribution is the next step on our path to achieving the long-term objective of combined vibration attenuation and isolation.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In