0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Vibration Reduction in Smart Structures Using Nonlinear Integral Resonant Controller

[+] Author Affiliations
Ehsan Omidi, Nima Mahmoodi

The University of Alabama, Tuscaloosa, AL

Paper No. SMASIS2015-9019, pp. V001T03A020; 8 pages
doi:10.1115/SMASIS2015-9019
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5729-8
  • Copyright © 2015 by ASME

abstract

This paper discusses a new nonlinear controller for vibration reduction in nonlinear vibrating smart structures. Nonlinear Integral Resonant Controller (NIRC) applies additional damping to the closed-loop system of a nonlinear vibrating system, and reduces the vibration amplitude in a wide range of frequency domain. An approximate solution is obtained using a multi-layer implementation of the Method of Multiple Scales, steady-state amplitude-frequency response is obtained and closed-loop stability is examined. Effects of different controller parameters on system response are investigated, in addition to numerical simulation results. In contrast to the Positive Position Feedback approach, the closed-loop response of the controlled system via NIRC does not show any high-amplitude peak in the neighborhood of the suppressed resonant frequency. This makes the closed-loop system robust to variations in excitation frequency.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In