0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrohydraulic Modeling of a Fluidic Artificial Muscle Actuation System for Robot Locomotion

[+] Author Affiliations
Edward Chapman, Marc Macleod, Matthew Bryant

North Carolina State University, Raleigh, NC

Paper No. SMASIS2015-8834, pp. V001T03A005; 7 pages
doi:10.1115/SMASIS2015-8834
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5729-8
  • Copyright © 2015 by ASME

abstract

Fluidic artificial muscles have the potential for a wide range of uses; from injury rehabilitation to high-powered hydraulic systems. Their modeling to date has largely been quasi-static and relied on the operator to adjust pressure so as to control force output and utilization while little work has been done to date to analyze the kinematics of the driving-systems involved in their operation. This paper establishes a combined electro-hydraulic model of a fluidic artificial muscle actuated climbing robot to establish a method for studying the relationships between muscle size, robot size and function, and system design. The study indicates a strong relationship between appropriate system component selection and not only system efficiency but individual component effectiveness. The results of the study show that robot mass, operating pressure, muscle size, and motor-pump selection have noteworthy impacts on the efficiency and thereby longevity of the robot for performing its task.

Copyright © 2015 by ASME
Topics: Robots , Modeling , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In