Full Content is available to subscribers

Subscribe/Learn More  >

Water-Repellent Slippery Surfaces for HVAC&R Systems

[+] Author Affiliations
Rong Yu, Anthony M. Jacobi

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. SMASIS2015-9065, pp. V001T01A019; 6 pages
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5729-8
  • Copyright © 2015 by ASME


Minimizing water retention on the air side of aluminum surfaces is important in the design and operation of efficient heat exchangers for heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems. Accumulation of water degrades the performance of heat exchangers by lowering the heat transfer rate and increasing the pressure drop. As a result, power consumption in such systems increases. In this work, a method of fabricating liquid-infused slippery surfaces with honeycomb-like superhydrophobic micro-/nano-structure substrate via an anodization process is developed. The slippery surface exhibits superhydrophobicity with a contact angle of 155° and a sliding angle smaller than 5°. The delay of ice formation is observed during condensation/frosting experiment. Frost-melt retention experiments show that the liquid-infused slippery surface reduces the water retention by 90% compared to an untreated specimen. The longevity of the slippery surface is also explored. The water retention ratio does not show a significant change after 60 frosting/defrosting cycles, and is still only one third that of the baseline. The slippery surface has potential in HVAC&R applications.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In