0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Electric Field-Guided Motion of Interacting Carbon Nanotubes Using a Dielectrophoretic Framework

[+] Author Affiliations
A. I. Oliva-Avilés

Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico

F. Avilés, V. V. Zozulya

Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico

Paper No. SMASIS2015-8911, pp. V001T01A005; 9 pages
doi:10.1115/SMASIS2015-8911
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5729-8
  • Copyright © 2015 by ASME

abstract

A theoretical investigation of the dynamic response of a pair of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under the presence of an alternating current (AC) electric field is presented. The proposed modeling strategy is based on the dielectrophoretic (DEP) theory and classical electrodynamics, and considers the effect of an applied AC electric field on the rotational and translation motion of interacting CNTs represented as electrical dipoles. The mutual interaction between a pair of adjacent CNTs stems from the presence of DEP-induced charges on the CNTs and, as such, contributes to the rotational and translational dynamics of the system. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs motion are investigated for different initial configurations. Based on the obtained results, it is here predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of CNTs immersed in solvents of high polarity promote faster rotational and translational motion and therefore faster equilibrium conditions (CNT tip-to-tip contact and horizontal alignment). The results incorporate important knowledge towards a better understanding of the complex mechanisms involved in the efforts of tailoring CNT networks by electric fields.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In