Full Content is available to subscribers

Subscribe/Learn More  >

Droplet Formation in a T-Junction Microfluidic Device in the Presence of an Electric Field

[+] Author Affiliations
Zeeshan Ahmad, Rattandeep Singh, Supreet Singh Bahga, Amit Gupta

Indian Institute of Technology Delhi, New Delhi, India

Paper No. ICNMM2015-48388, pp. V001T04A005; 9 pages
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Heat Transfer Division, Fluids Engineering Division
  • ISBN: 978-0-7918-5687-1
  • Copyright © 2015 by ASME


In this work, the effect of applying an electric field on droplet formation in a T-junction microfluidic device is examined by simulations based on a recent technique known as lattice Boltzmann method (LBM). The electric field is applied in the main channel just beyond the confluence of the continuous and dispersed phases. A combined electrohydrodynamics-multiphase model that can simulate the flow of immiscible fluids in the presence of an electric field is developed and validated. The same model is then applied to study the droplet formation process in a T-junction microfluidic device at a capillary number of 0.01 and at different dispersed to continuous phase flow rate ratios. Results show that there is a decrease in the droplet size and an increase in formation frequency as the electric field is increased. The interplay of the electric and interfacial forces on droplet formation is investigated.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In