0

Full Content is available to subscribers

Subscribe/Learn More  >

Real Time Estimation and Prediction of Wave Excitation Forces on a Heaving Body

[+] Author Affiliations
Bradley A. Ling, Belinda A. Batten

Oregon State University, Corvallis, OR

Paper No. OMAE2015-41087, pp. V009T09A017; 10 pages
doi:10.1115/OMAE2015-41087
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 9: Ocean Renewable Energy
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5657-4
  • Copyright © 2015 by ASME

abstract

Wave energy converters (WECs) face many technical challenges before becoming a cost-competitive source of renewable energy. The levelized cost of electricity could be decreased by implementing real-time control strategies to increase average power produced by a WEC. These control strategies typically require knowledge of the immediate future excitation force, caused by the waves. This paper presents a disturbance prediction methodology that is independent of the local wave climate and can be implemented on a wide range of devices.

A time-domain model of a generic heaving WEC is developed with the Cummins equations. The model is simulated with measured water surface elevation data collected off the Oregon Coast. A simplified linear frequency-invariant state-space model is used in conjunction with a Kalman filter to estimate the current excitation force with measurements of the WEC’s motion. Future excitation forces are then predicted multiple steps in the future with a recursive least squares filter. The results show this approach makes accurate predictions of excitation force over short time horizons (up to 15 seconds), but accurate predictions become infeasible for longer horizons.

Copyright © 2015 by ASME
Topics: Waves , Excitation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In