Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Mooring Analysis of 10 KW Floating Duct-Type Tidal Current Power System

[+] Author Affiliations
Chul-hee Jo, Yu-ho Rho, Chan-hoe Goo, Do-youb Kim

Inha University, Incheon, Korea

Paper No. OMAE2015-41780, pp. V009T09A011; 10 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 9: Ocean Renewable Energy
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5657-4
  • Copyright © 2015 by ASME


Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Among the various ocean energy sources, tidal current power (TCP) is recognized as the most promising energy source in terms of predictability and reliability. The enormous energy potential in TCP fields has been exploited by installing TCP systems. The flow speed is the most important factor for power estimation of a tidal current power system. The kinetic energy of the flow is proportional to the cube of the flow’s velocity, and velocity is a critical variable in the performance of the system. Since the duct can accelerate the flow speed, its use could expand the applicable areas of tidal devices to relatively low velocity sites. The inclined angle of the duct and the shapes of inlet and outlet affect the acceleration rates of the flow inside the duct. To investigate the effects of parameters that increase the flow speed, a series of simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS-CFX. Experimental investigations were conducted using a circulation water channel (CWC). Also, mooring system concepts are investigated using the commercial mooring analysis software WADAM and OrcaFlex. Due to other floating structures operating within a limited area, station-keeping is needed in order to keep the motions of the floating duct structures within permissible limits. In this study, methods for optimizing the mooring system of a floating duct-type tidal current power system in shallow water are investigated. Based on the performance and mooring analysis results of the 10 kW floating duct-type TCP system, a new design for a small capacity floating TCP system is introduced.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In