Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying Spatial Variability of As-Laid Embedment for Subsea Pipeline Design

[+] Author Affiliations
Zack Westgate

Fugro GeoConsulting, Houston, TX

Dave White

University of Western Australia, Perth, Australia

Paper No. OMAE2015-42292, pp. V05BT04A062; 9 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME


In deep water, the pre-service embedment of on-bottom pipelines is mainly controlled by the lay process and its effects on the soil strength. Predicted ranges in local pipeline embedment are often very wide due to uncertainties associated with the surface soil properties, the influence of the sea state and vessel motions on soil remolding, and the complexity of the large-deformation process of pipe-seabed penetration. Pipeline embedment has a significant impact on pipe-soil interaction resistance — commonly described by the ‘friction factors’ used for pipeline design. Most design checks, such as for controlled lateral buckling, need to be satisfied under both low and high extremes of pipe-soil resistance and therefore pipe embedment. A wide range in pipe embedment can create significant design challenges for pipeline engineers, for example where engineered buckle mitigation structures are required to alleviate potential high strains in the pipeline.

Data obtained from as-laid field surveys of subsea pipeline embedment have been analyzed to illustrate quantitatively how embedment varies along a pipeline route. This variation is linked to both anthropogenic influences, for example as a result of the stop-start pipeline construction process, as well as natural variability in (i) soil conditions along the route and (ii) sea state conditions during laying. Accounting for this variability through statistical analysis of as-laid embedment, and incorporation of appropriate length scales relevant to each design check, can have significant beneficial impacts on pipeline design through reductions in the ranges of pipe-soil friction factors. In some cases these may reduce or negate the need for expensive mitigation. The approaches illustrated in this paper have already found beneficial use on real projects.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In