Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Rock Berms for Pipeline Stabilization Subject to Intense Hydrodynamic Forcing

[+] Author Affiliations
Andrew Cornett, Scott Baker, Paul Knox

National Research Council of Canada, Ottawa, ON, Canada

Peter Riedel

Coastal Engineering Solutions, Melbourne, Australia

Paper No. OMAE2015-42249, pp. V05BT04A061; 9 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME and The Crown in Right of Canada


This article describes a comprehensive study in which 2D and 3D physical modelling at 1:40 scale was used to optimize the design and validate the performance of dynamically stable rock berms to be used for stabilizing several large pipelines traversing water depths from 5m to 65m and potentially exposed to large waves and strong currents generated by intense tropical cyclones. For added realism, all of the model rock berms were constructed using a scaled simulation of rock installation by fall pipe vessel to be used in the field. Special attention was also given to simulating the self-stability of the model pipeline segments, including special end constraints designed to mimic the behaviour of a continuous pipeline. A large data set concerning the behaviour of dynamically reshaping rock berms in a range of water depths under intense hydrodynamic forcing due to three-dimensional waves and currents was produced and used to develop efficient and cost-effective rock berm designs for all depth zones.

Copyright © 2015 by ASME and The Crown in Right of Canada



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In