0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Real-Time Measured and Predicted Wellhead Fatigue Performance in a Deepwater Drilling Operation

[+] Author Affiliations
James Mackenzie, Stuart Killbourn

Fugro GEOS Ltd, Glasgow, UK

Neil Murdoch

ATKINS, Aberdeen, UK

Paper No. OMAE2015-42107, pp. V05BT04A053; 10 pages
doi:10.1115/OMAE2015-42107
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME

abstract

This paper discusses the use of a real-time monitoring system to track wave driven fatigue damage at critical locations in a subsea well during a 290-day drilling operation in the Mediterranean Sea. Real-time monitoring was employed due to up-front finite element (FE) analysis predicting fatigue damage rates of sufficient magnitude that the required safety factor would not be met.

LMRP/BOP motions were recorded using two subsea monitoring units (each containing accelerometers and angular rate sensors). These were installed on the LMRP and above the lower flex joint. The accelerometer signals were used to deduce the static inclination of the well and the angular rate signals the dynamic inclination due to vessel motion and wave loading on the riser. Data was transmitted in real-time to a central processing unit on board the vessel. This converted the motion data into fatigue damage accumulation using non-linear transfer functions derived from the FE model. The damage was displayed in a simplified format for use in decision-making.

The recorded data revealed the motions of the LMRP/BOP and hence the damage rates in the well to be considerably less than predicted by the FE analysis. The damage rates derived from the monitoring system therefore served as a continuously updating demonstration that an acceptable margin of safety against suffering a fatigue failure was being maintained thus permitting drilling to proceed safely.

A subsequent benchmarking study which additionally involved processing of recorded vessel motion data, current data and seastate data was undertaken to identify possible reasons for the differences between the predicted and measured LMRP/BOP motions. This showed that conservative assumptions made on the soil stiffness (due to limited availability of data), differences between the predicted and measured riser natural periods and differences between the predicted and measured vessel motions all contributed to the LMRP/BOP motions and hence the damage rates predicted by the up-front FE analysis being larger than measured in the field. The systematic identification of the factors which contributed to the differences between the predicted and measured response is described in this paper. Areas where further work would be of value to help improve the reliability of up-front, analytically predicted fatigue damage rates are also discussed.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In