0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Collapse Resistance for Different D/t Ratios of UOE Pipes for Ultra Deepwater Application

[+] Author Affiliations
Rodrigo De Lucca, Fábio Arroyo, Ronaldo Silva

Tenaris, Pindamonhangaba, Brazil

Rafael F. Solano, Fabio B. de Azevedo

Petrobras, Rio de Janeiro, Brazil

Doug Swanek

C-Fer Technologies, Edmonton, AB, Canada

Hélio Alves

DNV GL, Rio de Janeiro, Brazil

Paper No. OMAE2015-42092, pp. V05BT04A040; 7 pages
doi:10.1115/OMAE2015-42092
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME

abstract

Energy consumption outlook shows that the demand for Oil and Gas is increasing worldwide and since most of the undemanding reserves are already being explored, new reserves means longer distances from the shore and increasing water depths, of up to 3,000 meters. Collapse resistance has become a key factor in the design of pipelines for ultra-deepwater applications. UOE process is commonly used for manufacturing pipelines of large diameter and the cold work involved in this forming process modifies the mechanical properties of the pipes. This paper presents the effect of thermal treatment on final material properties, proving the validity of enhancing collapse for different D/t, as allowed by DNV-OS-F101 αFab, and extending what has been shown as valid on previous studies. In this work, the inputs for the processing strategies are presented, along with coupon compression testing and full scale testing, in order to qualify the selected route as compliant with producing pipes with αFab equal to 1, for usual D/t combinations. An analysis of the predicted collapse pressure compared to the real collapse pressure of the pipes is also presented. The extension of the qualification process achieved successful results and allows the use of a fabrication factor equal to 1 in ultra-deepwater offshore pipeline projects. This enables the reduction of wall thickness, generating reductions in material and offshore installation costs and also potentially enhancing the feasibility of many challenging offshore projects.

Copyright © 2015 by ASME
Topics: Pipes , Collapse

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In