0

Full Content is available to subscribers

Subscribe/Learn More  >

Interference Assessment Between Top Tensioned Risers Using a Comprehensive Screening Approach

[+] Author Affiliations
Shankar Sundararaman, David Saldana, Suneel Patel, Pete Padelopoulos

2H Offshore Inc., Houston, TX

Ben Andrew

2H Offshore Ltd., Woking, UK

Metin Karayaka, Kamaldev Raghavan, Paul Hays

Chevron, Houston, TX

Paper No. OMAE2015-41466, pp. V05BT04A037; 11 pages
doi:10.1115/OMAE2015-41466
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME

abstract

Interference between top tensioned risers (TTRs) is a key design challenge. Due to TTR tensioner stroke limits combined with large vessel offsets, the space out of wellheads is limited. Therefore, riser-to-riser contact is more likely to occur in extreme current conditions.

Riser clearance between adjacent risers is evaluated accounting for the effects of wake, vortex-induced vibrations, current directionality (including variation through-depth), vessel offset, riser configuration, and drilling sequence. Accounting for all of these effects simultaneously and in detail when assessing TTR interference can be challenging.

The typical TTR array interference approach consists of a combination of riser deflection shape matching and detailed wake assessment. In this paper, a revised TTR interference analysis approach is discussed, with the inclusion of an intermediate step involving screening for critical riser pairs using a simplified wake model assessment. Riser deflection shape matching ensures that the likelihood of clashing is minimized. The riser interference screening process avoids detailed wake modelling of non-critical riser pairs. The screening analysis method emphasizes avoidance of false positives (unrealistic riser clashing pairs) and false negatives (missing riser clashing pairs). It employs a simplified conservative wake model using a stratified downstream current profile to determine which riser pairs are critical and warrant detailed wake modelling. To illustrate the efficiency of the screening approach, results from this approach are compared to results from analysis with detailed wake modelling.

An implementation of this approach is presented for riser joints with fairings and strakes. Nominal drag coefficients for these joints are obtained based on experimental testing and/or computational fluid dynamics simulations. Drag amplification of the upstream riser is obtained from vortex induced vibration (VIV) analysis and is also incorporated in the analysis.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In