Full Content is available to subscribers

Subscribe/Learn More  >

Integrity of Weld Overlay of Flexible Joints and Lined Pipe

[+] Author Affiliations
Petrônio Zumpano, Jr., Alexandre G. Garmbis, Luis Guilherme T. S. Leite, Rafael N. Silva

Petrobras, São José dos Campos, Brazil

Eduardo V. Oazen

Petrobras, Rio de Janeiro, Brazil

Paper No. OMAE2015-42193, pp. V05BT04A026; 8 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME


This paper describes different alternatives to be adopted to assess the integrity of weld overlays of flexible joints and lined pipes in offshore pipeline and riser projects. Protective layers are adopted as an interesting alternative to full thickness corrosion resistant alloys due to the possibility to adopt carbon steel as base material in order to reduce overall material costs. UNS N06625 (alloy 625) is generally selected for internal layers, such as weld overlay steels, lined pipes or clad pipes because of its sulfide stress cracking (SSC) resistance and outstanding weldability. However, unless the long-term integrity of the cladding or overlay as a protective layer can be demonstrated under the intended service conditions, the base material shall also be resistant against sulfide stress corrosion cracking. Due to low resistance of carbon steel to corrosion fatigue in the presence of contaminants in fluid content, the rupture of thickness of CRA (Corrosion Resistant Alloy) layer becomes a failure mode. An Engineering Critical Assessment (ECA) shall be performed in order to assess if circumferential planar flaws in weld overlay regions will not propagate through the CRA layer, thus exposing the base material, when submitted to critical cyclic loads during the service life. Such analysis would involve fatigue crack growth simulation and surface interaction of full circumferential embedded defects to determine the maximum weld overlay pass height to be limited by machining. This limited height of machined layers should guarantee that a full circumferential flaw will withstand the operational fatigue life. However, this is a very time consuming manufacturing process and would implicate additional concerns for long extensions due to out of straightness and out of roundness. Alternatively, the ECA results may be used to determine the flaw acceptance criteria and required probability of detection of volumetric non-destructive testing. Recent developments in ultrasonic inspection were successfully adopted and represent a better solution for alloy 625 weld overlay in terms of project scheduling and manufacturing costs. Radiographic testing may also be used provided it meets the required sensitivity, in terms of image quality indicators (IQI). Anyway, validation tests shall be performed to demonstrate adequate reliability to detect the minimum required flaw height.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In