0

Full Content is available to subscribers

Subscribe/Learn More  >

A Multiscale Mechanistic Model for Slow Transient Two-Phase Gas Condensate Flows in Pipelines

[+] Author Affiliations
Khalid Kamhawi, Yabin Zhao, Liam Finch

KW Subsea, Woking, UK

Paper No. OMAE2015-42040, pp. V05BT04A006; 8 pages
doi:10.1115/OMAE2015-42040
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5652-9
  • Copyright © 2015 by ASME

abstract

Various technical, commercial and operational requirements and conditions warrant the modelling of gas condensate pipelines as two-phase flows. Although phenomenological descriptions of two-phase flows are commonly used in the Oil and Gas Industry, the thermal-hydraulic complexities of such systems mean that a number of mechanistic formulations are available, some emphasising accuracy at the expense of computational efficiency, others preferring a more simplified approach. This article proposes a fully mechanistic slow transient model of two-phase condensate gas flows in pipelines, where the slip relation is derived from first principles using a mutliscale expansion method. Representative steady state and transient case studies for different operational conditions are simulated and solved numerically. Results are analysed and validated against an industry standard Two-Fluid Model based software.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In