0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of the Installation Process and the Bearing Capacity of Suction Bucket Foundations

[+] Author Affiliations
Marc Stapelfeldt

IGB Ingenieurgesellschaft mbH, Hamburg, Germany

Julian Bubel, Jürgen Grabe

Hamburg University of Technology, Hamburg, Germany

Paper No. OMAE2015-41808, pp. V001T10A020; 10 pages
doi:10.1115/OMAE2015-41808
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

This paper was developed in cooperation between the TUHH and Overdick GmbH & Co. KG. The goal of the presented work is gaining further knowledge about the installation and bearing behavior of suction bucket foundations for fixed offshore platforms based on sand.

Buckets are usually made of steel and consist of a cylinder and a lid at the top. They are installed into the sea floor by pumping water out of the buckets to create suction, which drives the bucket into the soil. Suction buckets do not require heavy hammer-equipment for construction like common piles. Thus the installation procedure is much faster and protects the environment significantly by avoiding noise emissions. Therefore, suction buckets are to be considered as a serious foundation alternative compared to steel piles.

For this paper numerical investigations are performed with the finite analyses software ABAQUS. A total of five finite element models — three for the bearing and two for the installation — were created to carry out parametric studies, while using a hypoplastic constitutive model to describe the soil conditions. Therefore, the buckets diameter, embedded depth and the pore-ratio are to be investigated. In addition three different load conditions are applied in the bearing capacity tests: the maximum vertical load, the maximum horizontal load and the minimum vertical load. During the simulation of the installation procedure different pore ratios are tested and it is attempted to simulate an installation by water-extraction.

Based on these numerical investigations it is possible to investigate known and currently more or less unknown phenomena of the bearing and the installation of suction buckets. Thus, a more detailed knowledge about the function of this kind of foundation is to be gained. In addition, the numerical studies are compared to the design-procedure according to API RP-2A-WSD and the DNV CN-30.4.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In