0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Stick-Slip Phenomena of the Drill Pipe

[+] Author Affiliations
Tokihiro Katsui, Yoshitomo Mogi

Kobe University, Kobe, Japan

Tomoya Inoue, Miki Y. Matsuo

JAMSTEC, Yokohama, Japan

Chang-Kyu Rheem

The University of Tokyo, Tokyo, Japan

Paper No. OMAE2015-41877, pp. V001T10A019; 7 pages
doi:10.1115/OMAE2015-41877
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

The stick-slip is one of the critical problems for the scientific drilling, because it causes a crushing of the sampled layer. The present study investigates the characteristics of stick-slip phenomena of the drill pipe with the model experiments and numerical methods. The model experiments are carried out using a 1m length drill pipe model made with the Teflon. The angular velocity at the top and the bottom of the pipe are measured with the gyro sensor on some conditions of rotating speed at the pipe top and the weight on bit (load at the pipe bottom). The numerical simulations are also carried out to reproduce the stick-slip phenomena of the model experiments. The stick-slip is a kind of torsional vibration which is governed by the convection equation. By considering the boundary condition at the top and bottom of the pipe, we can obtain a neutral delayed differential equation (NDDE). The solutions of the NDDE is depend on not the initial value but the initial history of the solution, because NDDE contains a delayed function term. Therefore, it should be solved carefully to avoid the numerical error. The NDDE is solved with the 4th order Runge-Kutta scheme with very small time increment until the truncation error could be neglected. And also, we have found out that the effect of the initial history on the solution become to be very small after a certain period of time. The experimental results are compared with the numerical results under the same rotating condition. The experimental results of the stick-slip suggest that the period of the slip is mainly depend on the rotation speed at the pipe top and the magnitude of the slip is mainly depend on the weight on bit. Those characteristics of the stick-slip such as the period or the magnitude of slip are also obtained with the numerical calculations. However, in order to obtain an acceptable numerical results of NDDE, we have to adjust the frictional torque acting on the drill bit. Though, the frictional torque model was determined by reference to the measured torque at the top of the drill pipe model in the present study, it is desired to be improved. Therefore, the physical model of the frictional torque on the drill bit should be evaluated much carefully for the precise estimation of the stick slip in the future.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In