Full Content is available to subscribers

Subscribe/Learn More  >

Stability of Artificial Subaqueous Slopes in Sandy Soils Under Wave Loads

[+] Author Affiliations
Julian Bubel, Marc-André Pick, Jürgen Grabe

Hamburg University of Technology, Hamburg, Germany

Paper No. OMAE2015-41827, pp. V001T10A014; 9 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME


Shallow foundation structures in marine environments can rarely be placed on top of the sea floor. Weak soils usually need to be excavated to place the structure on more stable ground. Steep but stable slopes of the resulting pit meet both economic and ecologic aims as they minimise material movement and sediment disturbance. This paper focuses changes of geometry of submarine slopes in non-cohesive soils (erosion, sedimentation, breach failure, liquefaction failure) due to surface waves.

After Terzaghi the angle between slope and the horizontal of the ground surface of cohesionless soil is at most equal to the critical state friction angle, as obviously true for dry soil. However, it can be observed that natural submarine slopes of sandy soils are always mildly sloped. During the construction of artificial submarine pits under offshore conditions it should be considered that the long-term slope-inclination is less than onshore due to hydrodynamic actions (e. g. flow, waves, earthquakes). Large surface waves cause excess pore water pressures within the soil body, leading to a reduction of effective stresses and in case of submarine slopes to changes of the slope geometry depending on wave length L, wave height H, water depth h and soil properties (permeability k, relative density Dr).

During our preliminary work we investigated such processes based on the coupling of linear wave theory and linear quasistatic consolidation theory (e.g. [1]). With the help of numerical modelling we solved corresponding equations considering also materially nonlinear consolidation. However, deformations were always limited by used Lagrangian-FEM. Recent developments at our Institute enable the use of an Eulerian-FEM approach with an u-p-Formulation for fully saturated soil [2]. This allows larger deformations of the subaqueous slope to be numerically investigated.

Copyright © 2015 by ASME
Topics: Stability , Stress , Waves , Soil



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In