0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Post-Peak Softening Behavior of Dense Sand on Lateral and Upward Displacement of Buried Pipelines

[+] Author Affiliations
Kshama Roy, Bipul Hawlader

Memorial University of Newfoundland, St. John’s, NL, Canada

Shawn Kenny

Carleton University, Ottawa, ON, Canada

Ian Moore

Queen’s University, Kingston, ON, Canada

Paper No. OMAE2015-42138, pp. V001T10A011; 9 pages
doi:10.1115/OMAE2015-42138
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

Buried pipelines are extensively used in onshore and offshore for transportation of hydrocarbons. The response of pipeline due to lateral and upward relative displacements is one of the major concerns in pipeline design. Both physical modeling and numerical analyses have been performed in the past to understand pipeline-soil interaction mechanisms. The numerical analyses are generally performed using finite element (FE) modeling techniques. For the pipelines buried in sand, a large number of analyses available in the literature have been performed using the Mohr-Coulomb model assigning constant values of angle of internal friction (ϕ′) and dilation (ψ). However, dense sand shows post-peak softening behavior and the behavior of sand also depends on mode of shearing, such as triaxial (TX), direct shear (DS) or direct simple shear (DSS) conditions. In the present study, FE analysis of buried pipelines in dense sand is presented. The first set of analyses are performed using the built-in Mohr-Coulomb model in Abaqus FE software with constant angles of internal friction and dilation, as typically used in previous FE analysis of pipeline-soil interaction. The second set of analyses are performed using a modified Mohr-Coulomb model where pre-peak hardening, post-peak softening, density and confining pressure dependent friction and dilation angles are considered. The FE analyses are performed using the Arbitrary Lagrangian-Eulerian (ALE) approach available in Abaqus/Explicit FE software. The modified Mohr-Coulomb model is implemented in Abaqus FE software using a user defined subroutine. Shear band formation due to strain localization and failure patterns for both lateral and upward pipeline-soil interactions are discussed from the simulations with MC and MMC models. FE results show that the MMC model can simulate the load-displacement behavior and failure pattern better than the simulations with the MC model.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In