0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Simulation Method to Predict Green Water Loads on Superstructures

[+] Author Affiliations
Lasse Theilen, Ole Detlefsen, Moustafa Abdel-Maksoud

Hamburg University of Technology, Hamburg, Germany

Michael Bohm

Nobiskrug GmbH, Rendsburg, Germany

Paper No. OMAE2015-41373, pp. V001T01A035; 10 pages
doi:10.1115/OMAE2015-41373
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

The numerical prediction of green water loads on super-structures is challenging due to the high number of required calculations to identify the critical operational conditions in the seaway which lead to overcoming seawater on deck. Further, the simulation of the non-linear behaviour of water on the deck and the prediction of impact loads require high computational effort. This paper presents an efficient three-step approach to simulate green water loads. The application of the developed procedure will be demonstrated on a mega yacht geometry.

Copyright © 2015 by ASME
Topics: Simulation , Stress , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In