0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental RAO’s Analysis of a Monolithic Concrete SPAR Structure for Offshore Floating Wind Turbines

[+] Author Affiliations
Alexis Campos, Climent Molins, Xavier Gironella, Pau Trubat, Daniel Alarcón

Universitat Politècnica de Catalunya, Barcelona, Spain

Paper No. OMAE2015-41891, pp. V001T01A016; 9 pages
doi:10.1115/OMAE2015-41891
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

Nowadays the offshore wind energy market is clearly oriented to be extended around the world. Bottom fixed solutions for supporting offshore wind turbines are useful in shallow waters which are available in a limited extent unless a continental shelf exists. Considering the Oil & Gas background knowledge, move from bottom fixed solutions to floating solutions is not a technical challenge, but the cost of each structure in terms of industry profit is currently the main issue for its commercial implementation. That point has induced huge research efforts on the topic.

Recently, a new concept consisting of a monolithic concrete SPAR platform was experimentally and numerically studied in the framework of the AFOSP KIC-InnoEnergy project (Alternative Floating Platform Designs for Offshore Wind Towers using Low Cost Materials) [1] [2]. The studies comprised a set of hydrodynamic tests performed in the CIEM wave flume facility at UPC, with a 1:100 scaled model assuming Froude similitude.

The whole test campaign includes free decay tests, RAO’s determination, regular and irregular waves with and without wind mean force. For the determination of the platform RAO’s, a set of 21 regular waves trains with periods ranging from 0.8s up to 4.8s were applied. The 6 DOF motions of the platform were measured with an infrared stereoscopic vision system.

In this paper, a summary of pitch and heave RAO’s tests will be presented with the main objective to calibrate and validate the accuracy of the Morison-based numerical model for floating wind turbine platforms developed at the Universitat Politècnica de Catalunya.

Because the wave flume spatial constraints, both Airy and Stokes wave theories are necessary to reproduce the correct wave kinematics. The numerical model includes both theories and a comparison between them has been done, checking the validity range of each one.

The simulations revealed a reasonable good agreement with the experimental results, as well with the computed RAO’s in commercial software.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In