0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Fluttering and Autorotation Motion of Vertically Hinged Flat Plate

[+] Author Affiliations
Ali Bakhshandeh Rostami, Antonio Carlos Fernandes

LOC-COPPE-UFRJ, Rio de Janeiro, RJ, Brazil

Paper No. OMAE2015-41244, pp. V001T01A001; 9 pages
doi:10.1115/OMAE2015-41244
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5647-5
  • Copyright © 2015 by ASME

abstract

This paper is dedicated to the simulation of fluttering (oscillatory) and tumbling (rotational) phenomenon that may occur during the flow induced rotation in the water or air current. Fluttering is the oscillation of body about an axis and the tumbling, better called here as autorotation, is a name given to the case when the body turns continuously around the axis. This work describes the simulation of these phenomena by a nonlinear time domain code on freely rotating plate about a fixed vertical axis. The dimensional analysis proves that the rotational motion induced by flow is governed essentially by the dimensionless moment of inertia (I*) and Reynolds number. For Reynolds number less than 15000, plate experiences small amplitude fluttering motion that is independent of I*. It is shown that by increasing I* the fluttering bifurcates to autorotation, with a transition point that is approximately independent of Reynolds number and is such that I*=0.083.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In