0

Full Content is available to subscribers

Subscribe/Learn More  >

Vibration Control of a Cantilever Beam by Metal-Core Flexoelectric and Piezoelectric Fibers

[+] Author Affiliations
X. F. Zhang, H. Li, H. S. Tzou

Zhejiang University, Hangzhou, Zhejiang, China

Paper No. IMECE2014-37772, pp. V04BT04A063; 9 pages
doi:10.1115/IMECE2014-37772
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

Flexoelectric effect occurs in the solid crystalline dielectrics of symmetry or centro-symmetric crystals, which shows the electromechanical coupling of the polarization response and the strain gradient or the stress and the electric field gradient. Thus, a generic stress expression induced by the converse flexoelectric effect is established first in this study. The generic stress expression is simplified to a cantilever beam to evaluate the vibration control effect due to the converse flexoelectric effect. Flexoelectric fiber embedded with a metal core is placed into the cantilever beam to generate inhomogeneous electric field. When the flexoelectric fiber is actuated with the applied voltage, stress induced by the actuator is obtained with the electric field gradient, which results in a control bending moment to the beam. Static displacement control of the cantilever beam is established and the control effect is related to the fiber location and size of the flexoelectric fiber and the metal core. Cases show that the control effect is enhanced when the flexoelectric fiber is far away from the neural surface of the beam. Besides, the control effect can enhance with thinner fiber thickness. Since the piezoelectricity is similar to the flexoelectricity, comparison of the vibration control induced by the piezoelectric fiber is also discussed. The results show that the control effect of the flexoelectric fiber is more effective than the piezoelectric fiber in the cantilever beam.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In