0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Active Control for Thermal Deformation of Precise Membrane Reflector With Boundary SMA Actuators

[+] Author Affiliations
Yi-Fan Lu, Hong-Hao Yue, Zong-Quan Deng

Harbin Institute of Technology, Harbin, China

Horn-Sen Tzou

Zhejiang University, Hangzhou, China

Paper No. IMECE2014-37343, pp. V04BT04A061; 9 pages
doi:10.1115/IMECE2014-37343
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

Along with the rapid development of space exploration, communication and earth observation technology, the large space membrane structure gains its widely application. With poor stiffness and large flexibility, the surface accuracy of membrane structures can be easily interfered by the space environment variety, so precise shape control of in-orbit space membrane reflector becomes the focus in space technology area. As an object for this paper, the active control of the membrane reflector deformation under typical thermal disturbance in space is investigated. Considering of Von-Karman geometrical nonlinearity, the equilibrium equations of a circular membrane are firstly presented based on Hamilton’s Principle and Love’s thin shell theory. As a simplification for equilibrium equations, the nonlinear mathematical model for the circular membrane in a symmetrical temperature field is obtained. In the next place, an FE model for a circular membrane under thermal load is developed in Abaqus as an example. By contrasting the FEM deformation analysis with mathematical modeling solutions of circular membrane reflectors under typical thermal load, it is demonstrated that the theoretical model is capable of predicting the amplitude of membrane surface deformation. At last, a boundary actuation strategy for membrane shape control is proposed, which could effectively decrease the membrane wrinkle induced by thermal disturbance via precisely control to the tension of the SMA wire actuators. The simulation result indicates the effectiveness of boundary active control strategy on improving membrane surface accuracy with different temperature distributions. The conclusions of modeling and analysis in this paper will be an essential theoretical foundation for future research on active flatness control for in-orbit large space membrane structure.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In