0

Full Content is available to subscribers

Subscribe/Learn More  >

A Torsion Based Shear Mode Piezoelectric Energy Harvester for Wireless Sensor Modules

[+] Author Affiliations
V. Kulkarni, R. Ben-Mrad, S. Eswar Prasad

University of Toronto, Toronto, ON, Canada

Paper No. IMECE2014-37640, pp. V04BT04A053; 4 pages
doi:10.1115/IMECE2014-37640
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

Energy harvesting devices are growing in popularity for their ability to capture the ambient energy surrounding a system and convert it into usable electrical energy. With an increasing demand for portable electronics and wireless sensors in a number of sectors, energy harvesting has the potential to create self-powered sensor systems operating in inaccessible locations. This paper discusses a torsion based piezoelectric energy harvester that utilizes superior shear mode piezoelectric properties to harvest energy from vibrations. Mathematical expressions are used to determine optimized geometry configurations for the harvester. Using these expressions, a harvester design is presented for use with wireless sensor networks.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In