Full Content is available to subscribers

Subscribe/Learn More  >

Design and Optimization of Multi-Modal Vibration Energy Harvesters Using Slitted Beams

[+] Author Affiliations
Mina Dawoud, Hesham Hegazi

Cairo University, Cairo, Egypt

Mustafa Arafa

American University in Cairo, Cairo, Egypt

Paper No. IMECE2014-37560, pp. V04BT04A052; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME


The objective of this work is to design cantilever beams possessing close vibration modes to enable harvesting energy from variable frequency sources of base motion. In this context, the geometry of two-dimensional cantilever beams is designed to obtain closely spaced harvestable modes of vibration. A number of internal slits are made inside the beam, whose outer contour and mass distribution are altered in such a way to obtain the desired frequency spacing. The beam carries two permanent magnets that oscillate past stationary pickup coils in order to convert the mechanical motion into electric power. Optimum design results of the shape and geometrical parameters of the system are presented towards controlling the natural frequencies, their spacing and the output power. Simulations of the system dynamics are supported by experimental validation.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In