0

Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Solution of Two Coupled Oscillators With a Nonlinear Coupling Resorting Force

[+] Author Affiliations
Mohammad A. Al-Shudeifat, Thomas D. Burton

Khalifa University of Science, Technology & Research (KUSTAR), Abu Dhabi, UAE

Paper No. IMECE2014-39971, pp. V04BT04A035; 6 pages
doi:10.1115/IMECE2014-39971
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

An approach for accurate analytical solution of a two degree-of-freedom nonlinear dynamical system coupled with a strongly nonlinear restoring force is presented here. The approach is based on the application of the local equivalent linear stiffness method (LELSM) to linearize the nonlinear coupling stiffness in the system based on the nonlinear frequency calculation. Consequently, the system can be decoupled into two forced single degree-of-freedom subsystems by replacing the nonlinear coupling force with a forcing function where the solution can be analytically obtained. Different combinations of the positive and negative linear and cubic stiffness components are considered in the nonlinear coupling force. For all considered stiffness combinations, the obtained analytical solution strongly agrees with the numerical simulation of the system. In addition, the internal resonance is found not to significantly affect the accuracy of the analytical solution.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In