0

Full Content is available to subscribers

Subscribe/Learn More  >

Model Order Reduction for Design of Torsional Disk Couplings

[+] Author Affiliations
Alex Francis, Ilya Avdeev

University of Wisconsin-Milwaukee, Milwaukee, WI

Paper No. IMECE2014-39275, pp. V04BT04A008; 2 pages
doi:10.1115/IMECE2014-39275
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

Torsional couplings are used to transmit power between various rotating components of power systems while allowing for relatively small misalignments that may otherwise lead to equipment failure. When selecting a proper coupling type and size, one has to consider three important conditions: (1) maximum load applied to the coupling, (2) maximum operation speed and (3) amount of misalignment allowable for normal operation.

There are many types of flexible couplings that use various materials for the flexible element of the coupling on the market today. Design of the coupling and the materials used for the flexible elements determine the coupling’s operating characteristics. In this project, we study metal disk couplings. Benefits of this type of coupling include: ease of replacement or repair, clear visual feedback of element failure, and the absence of a need for lubrication. The torsional stiffness of a coupling is a major factor relative to the amount of misalignment allowable. Currently, flexible couplings are tested by manufacturers to experimentally determine the torsional stiffness; a process which requires expensive equipment and more importantly employee time to set-up and run. The torsional coupling lumped characteristics, such as torsional- and flexural stiffness, as well as natural frequencies are important for design of the entire power system and have to be as precise as possible. In this work, we have developed an accurate modeling framework for determining these parameters based on a full 3-D finite element model and model-order reduction procedure. Developed methodology was validated by available experimental data from one of the leading manufacturers of torsional couplings.

Copyright © 2014 by ASME
Topics: Design , Disks , Couplings

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In