Reduced NOx Emissions Using Low Radial Swirler Vane Angles PUBLIC ACCESS

[+] Author Affiliations
H. S. Alkabie, G. E. Andrews

The University of Leeds, Leeds, UK

Paper No. 91-GT-363, pp. V003T06A032; 12 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7900-9
  • Copyright © 1991 by ASME


The influence of vane angle and hence swirl number of a radial swirler on the weak extinction, combustion inefficiency and NOx emissions was investigated at lean gas turbine combustor primary zone conditions. A 140mm diameter atmospheric pressure low NOx combustor primary zone was developed with a Mach number simulation of 30% and 43% of the combustor air flow into the primary zone through a curved blade radial swirler. The range of radial swirler vane angles was 0–60 degrees and central radially outward fuel injection was used throughout with a 600K inlet temperature. For zero vane angle radially inward jets were formed that impinged and generated a strong outer recirculation. This was found to have much lower NOx characteristics compared with a 45 degree swirler at the same pressure loss. However, the lean stability and combustion efficiency in the near weak extinction region was not as good. With swirl the central recirculation zone enhanced the combustion efficiency. For all the swirl vane angles there was little difference in combustion inefficiency between the swirlers. However, the NOx emissions were reduced at the lowest swirl angles and vane angles in the range 20–30 degrees were considered to be the optimum for central injection. NOx emissions for central injection as low as 5ppm at 15% oxygen and 1 bar were demonstrated for zero swirl and 20 degree swirler vane angle. This would scale to well under 25 ppm at pressure for all current industrial gas turbines.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In