CFD Analysis of Jet Mixing in Low NOx Flametube Combustors PUBLIC ACCESS

[+] Author Affiliations
M. V. Talpallikar, C. E. Smith

CFD Research Corporation, Huntsville, AL

M. C. Lai

Wayne State University, Detroit, MI

J. D. Holdeman

NASA Lewis Research Center, Cleveland, OH

Paper No. 91-GT-217, pp. V003T06A018; 10 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7900-9
  • Copyright © 1991 by ASME


The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has been identified as a potential gas turbine combustor concept to reduce NOx emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NOx levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases.

In this study, jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed.

Results showed mixing and NOx emissions to be highly sensitive to J and slot aspect ratio. Lowest NOx emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In