A Catalytic Combustor for High-Temperature Gas Turbines PUBLIC ACCESS

[+] Author Affiliations
Nicolas Vortmeyer, Martin Valk, Günter Kappler

Technische Universität München, München, Germany

Paper No. 94-GT-211, pp. V003T06A001; 5 pages
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7885-9
  • Copyright © 1994 by ASME


Catalytic combustion has been the subject of thorough research work for over two decades, mainly in the U.S. and Japan. However, severe material problems in the ceramic or metallic monolith prevented regular operation in most cases. Still, during these two decades, turbine inlet temperatures were raised remarkably, and lean premix combustors have become standard in stationary gas turbines.

In view of these facts, a simple “monolith-in-tube” concept of a catalytic combustor was adapted for the use in high-temperature gas turbines. Its essential feature is the fact that a considerable portion of the homogeneous gas phase reaction is shifted to the thermal reactor, thus lowering the catalyst temperature. This is achieved by the employment of very short catalyst segments. The viability of this concept has been demonstrated for a variety of pure hydrocarbons, alcohols as well as common liquid fuels.

Extensive experimental investigations of the atmospheric combustor lead to the assessment of parameters such as reference velocity, fuel-to-air ratio and fuel properties. The maximum combustor exit temperature was 1,673 K with a corresponding catalyst temperature of less than 1,300 K for Diesel fuel. Boundary conditions were in all cases combustion efficiency (over 99.9%) and pressure loss (less than 6%).

Additionally, a model has been developped to predict the characteristic values of the catalytic combustor such as necessary catalyst length, combustor volume and emission characteristics. The homogeneous reaction in the thermal reactor can be calculated by a one-dimensional reacting flow model.

Copyright © 1994 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In