0

Topping Combustor Development for Second-Generation Pressurized Fluidized Bed Combined Cycles PUBLIC ACCESS

[+] Author Affiliations
W. F. Domeracki, T. E. Dowdy

Westinghouse Electric Corporation, Orlando, FL

D. M. Bachovchin

Westinghouse Science and Technology Center, Pittsburgh, PA

Paper No. 94-GT-176, pp. V003T05A002; 12 pages
doi:10.1115/94-GT-176
From:
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7885-9
  • Copyright © 1994 by ASME

abstract

A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate a nominal 1600°F (870°C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350°F (1290°C) to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed.

Westinghouse is participating in the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor. The topping combustor in this cycle must utilize a low heating value syngas from the carbonizer at approximately 1600°F (870°C) and 150 to 210 psi (1.0 to 1.4 MPa). The syngas entering the topping combustor has been previously cleaned of particulates and alkali by the hot gas cleanup (HGCU) system. It also contains significant fuel bound nitrogen present as ammonia and other compounds. The fuel-bound nitrogen is significant because it will selectively convert to NOx if the fuel is burned under the highly oxidizing conditions of standard combustion turbine combustors.

The fuel must be burned with the vitiated air from the pressurized fluidized bed combustor (PFBC). Oxidizer has been cleaned of particulates and alkali by HGCU system, and has also been partially depleted in oxygen. The 1600°F (870°C) oxidizer must also be utilized to cool the combustor as much as possible, though a small amount of compressor discharge air at a lower temperature 700°F (about 370°C) may be used.

The application requirements indicate that a rich-quench-lean (RQL) combustor is necessary and the multi-annular swirl burner (MASB) was selected for further development. This paper provides an update on the development and testing of this MASB combustor. Additionally, Westinghouse has been conducting computational fluid dynamic (CFD) and chemical kinetic studies to assist in the design of the combustor and to help optimize the operation of the combustor. Results of these models are presented and compared to the test results.

Copyright © 1994 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In