0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Particle Size Distribution on the Deep-Bed Capture Efficiency of an Exhaust Particulate Filter

[+] Author Affiliations
Sandeep Viswanathan, Stephen S. Sakai, Mitchell Hageman, David E. Foster, Todd Fansler, Michael Andrie, David A. Rothamer

University of Wisconsin, Madison, WI

Paper No. ICEF2014-5464, pp. V001T04A001; 14 pages
doi:10.1115/ICEF2014-5464
From:
  • ASME 2014 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems
  • Columbus, Indiana, USA, October 19–22, 2014
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4616-2
  • Copyright © 2014 by ASME

abstract

The exhaust filtration analysis system (EFA) developed at the University of Wisconsin – Madison was used to perform micro-scale filtration experiments on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct injection (SIDI) engine fueled with gasoline. A scanning mobility particle sizer (SMPS) was used to characterize running conditions with four distinct particle size distributions (PSDs). The distributions selected differed in the relative number of accumulation versus nucleation mode particles. The SMPS and an engine exhaust particle sizer (EEPS) were used to simultaneously measure the PSD downstream of the EFA and the real-time particulate emissions from the SIDI engine to determine the evolution of filtration efficiency during filter loading. Cordierite filter samples with properties representative of diesel particulate filters (DPFs) were loaded with PM from the different engine operating conditions. The results were compared to understand the impact of particle size distribution on filtration performance as well as the role of accumulation mode particles on the diffusion capture of PM. The most penetrating particle size (MPPS) was observed to decrease as a result of particle deposition within the filter substrate. In the absence of a soot cake, the penetration of particles smaller than 70 nm was seen to gradually increase with time, potentially due to increased velocities in the filter as flow area reduces during filter loading, or due to decreasing wall area for capture of particles by diffusion. Particle re-entrainment was not observed for any of the operating conditions.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In