Full Content is available to subscribers

Subscribe/Learn More  >

Enhancing Low Temperature Combustion With Biodiesel Blending in a Diesel Engine at a Medium Load Condition

[+] Author Affiliations
Sunyoup Lee, Seungmook Oh, Junghwan Kim

Korea Institute of Machinery and Materials, Daejeon, South Korea

Duksang Kim

Doosan Infracore Inc., Yongin, Gyeonggi, South Korea

Paper No. ICEF2014-5406, pp. V001T03A002; 11 pages
  • ASME 2014 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems
  • Columbus, Indiana, USA, October 19–22, 2014
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4616-2
  • Copyright © 2014 by ASME


The present study investigated the effects of biodiesel blending under a wide range of intake oxygen concentration levels in a diesel engine. This study attempted to identify the lowest biodiesel blending rate that achieves acceptable levels of nitric oxides (NOx), soot, and coefficient of variation in the indicated mean effective pressure (COVIMEP). Biodiesel blending was to be minimized in order to reduce the fuel penalty associated with the biodiesels lower caloric value. Engine experiments were performed in a 1-liter single-cylinder diesel engine at an engine speed of 1400 rev/min under a medium load condition. The blend rate and intake oxygen concentration were varied independently of each other at a constant intake pressure of 200 kPa. The biodiesel blend rate varied from 0% (B000) to 100% biodiesel (B100) at a 20% increment. The intake oxygen level was adjusted from 8 to 19% by volume (vol %) in order to embrace both conventional and low-temperature combustion (LTC) operations. A fixed injection duration of 788 μs at a fuel rail pressure of 160 MPa exhibited a gross indicated mean effective pressure (IMEP) between 750 kPa and 910 kPa, depending on the intake oxygen concentration.

The experimental results indicated that the intake oxygen level had to be below 10 vol% to achieve the indicated specific NOx (ISNOx) below 0.2g/kWhr with the B000 fuel. However, a substantial soot increase was exhibited at such a low intake oxygen level. Biodiesel blending reduced NOx until the blending rate reached 60% with reduced in-cylinder temperature due to lower total energy release. As a result, 60%-biodiesel blended diesel (B060) achieved NOx, soot, and COVIMEP of 0.2 g/kWhr, 0.37 filter smoke number (FSN), and 0.5, respectively, at an intake oxygen concentration of 14 vol%. The corresponding indicated thermal efficiency was 43.2%.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In