Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Very High Injection Pressure on Soot Emissions of Medium Speed Large Diesel Engines

[+] Author Affiliations
Michael Engelmayer, Gert Taucher, Andreas Wimmer

Graz University of Technology, Graz, Austria

Gernot Hirschl

VIRTUAL VEHICLE Research Center, Graz, Austria

Thomas Kammerdiener

AVL List GmbH, Graz, Austria

Paper No. ICEF2014-5692, pp. V001T01A010; 8 pages
  • ASME 2014 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems
  • Columbus, Indiana, USA, October 19–22, 2014
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4616-2
  • Copyright © 2014 by ASME


Measures exist to adjust tailpipe NOx emissions to assigned values, for example cooled exhaust gas recirculation (EGR) or a SCR catalyst in conjunction with urea. The situation is quite different with soot when use of a trap is not feasible for reasons of cost, space requirements and maintenance. Due to the highly complex soot formation and oxidation process, soot emissions can’t be targeted as easily as NOX. So how can soot be kept within the limits?

In principle, soot can be controlled by allocating sufficient oxygen and establishing good mixing conditions with vaporized fuel. The most effective measures target the injection system, e.g. increasing injection pressure, applying multiple injections, optimizing nozzle geometry.

To investigate the impact of very high injection pressure on soot, an advanced injection system with rail pressure capability up to 3000 bar and a Bosch injector was installed at the Large Engines Competence Center (LEC) in Graz. Full load and part load operating points at constant speed and in accordance with the propeller law were investigated at the test bed to quantify the impact of high injection pressure on soot emissions. Test runs were conducted with both SCR and EGR while varying injection timing and air-fuel ratios. Use of a statistical method, Design of Experiments (DOE), helped reduce the number of tests.

Optical investigations of the spray and combustion were conducted. The goal was to obtain soot concentration history traces with the two color method in order to better understand how soot originates and to be able to calibrate 3D CFD FIRE spray models for use with injection pressures of up to 3000 bar.

Very low soot emissions can be achieved using high pressure injection, even when EGR is applied. DOE results provide a clear picture of the relationships between the parameters and can be used to optimize set values for the whole speed and load range.

A reliable spray break up model can be used in further 3D CFD simulation to investigate how to reduce soot emissions.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In