Full Content is available to subscribers

Subscribe/Learn More  >

Development of Prediction Technology of Two-Phase Flow Dynamics Under Earthquake Acceleration: (11) Bubble Motion Under the Flow Vibration

[+] Author Affiliations
Ryotaro Yokoyama, Jun-ichi Takano, Hideaki Monji, Akiko Kaneko, Yutaka Abe

University of Tsukuba, Tsukuba, Ibaraki, Japan

Hiroyuki Yoshida, Kazuyuki Takase

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Paper No. ICONE22-30014, pp. V005T17A003; 10 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 5: Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4595-0
  • Copyright © 2014 by ASME


Earthquake is one of the most serious phenomena for safety of a nuclear power plant. Therefore, nuclear reactors were contracted considering structural safety for a big earthquake. In a nuclear reactor, the gas-liquid two-phase flow is the one of primary factor of the property and bubbly or plug flow behavior is important issue to evaluate of safety. However, the influence of an earthquake vibration on the gas-liquid two-phase flow inside the nuclear power plant is not understood enough. For example, the bubbly flow behavior under the flow rate fluctuation caused by the earthquake acceleration is not clear. It is necessary to clear the two-phase flow behavior under the earthquake conditions. To develop the prediction technology of two-phase flow dynamics under the earthquake acceleration, the detailed two-phase flow simulation code with an advanced interface tracking method, TPFIT was expanded to the two-phase flow simulation under earthquake accelerating conditions. In the present study, the objective is to clarify the behavior of the gas-liquid two-phase flow under the earthquake conditions. Especially, the bubble behavior in the two-phase flow, a diameter, shape and velocity of bubbles which are expected to be influenced by the oscillation of the earthquake is investigated. In this experiment, the flow was bubbly flow and/or plug flow in a horizontal circular pipe. The working fluids were water and nitrogen gas. The nitrogen gas from gas cylinder was injected into the water through a nozzle and bubbly flow was generated at a mixer. The water was driven by a pump and the flow rate fluctuation was given by a reciprocating piston attached to the main flow loop. Main frequency of earthquakes is generally between 0.5Hz and 10Hz. Thus the frequency of the flow rate fluctuation in the experiment also was taken between 0.5Hz and 10Hz. The behavior of horizontal gas-liquid two-phase flow under the flow rate fluctuation was investigated by image processing using a high-speed video camera and PIV at test section. The pressure sensors were installed at the inlet of the mixer and the outlet of the test section. As the result, the bubble behavior mechanism under the flow rate fluctuation was obtained. In addition, the acceleration of a bubble and the pressure gradient in the pipe was synchronized under all frequency conditions. The prediction results by TPFIT were compared with the experimental results. They show good agreement on the flow field around a bubble and the bubble behavior.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In