Full Content is available to subscribers

Subscribe/Learn More  >

Comparison Between PARCS and MCNP6 Codes on VVER1000/V320 Core

[+] Author Affiliations
Guido Mazzini, Bruno Miglierini, Marek Ruščák

Research Centre Rez, Husinec-Rez, Czech Republic

Paper No. ICONE22-30386, pp. V004T11A007; 6 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 4: Radiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4594-3
  • Copyright © 2014 by ASME


Research Centre Rez solves several safety related projects dealing with safety of Czech NPPs, some of which require fully functioning Three Dimensional (3D) model of the reactor core. While in a number of safety analysis of various accident scenarios it is sufficient to use one point reactor kinetics, there are selected types of accidents in which it is useful to model the space (3D) neutron kinetics, in particular control rod ejections, boron dilution scenarios, including transitions from design basis to beyond design basis accidents. This paper is focused to analyze the present model of the core of VVER1000/V320 reactor. Which is applicable for 3D modeling of neutron kinetics in selected design and beyond design basis accidents. The model is based on a cross-sections library created by SCALE 6.1.2/TRITON simulations. PARCS 3.2 code uses homogenized cross-sections libraries to calculate neutronic and other core parameters of the PWR reactors. Similar model is prepared with MCNP6 for comparison between deterministic (Pn spherical-harmonics method used in PARCS) and the stochastic (Monte Carlo) approach (used in MCNP6). Such comparison will serve as a demonstration of the capability of the PARCS code for VVER1000/V320 analyses.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In