Full Content is available to subscribers

Subscribe/Learn More  >

Stress Analysis of the Canned Nuclear Coolant Pump Based on FSI

[+] Author Affiliations
Zhang Ji-Ge, Zhu Yue

Shanghai Jiao Tong University, Shanghai, China

Paper No. ICONE22-30587, pp. V004T10A023; 6 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 4: Radiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4594-3
  • Copyright © 2014 by ASME


The reactor coolant pump (RCP) is one of the most important components in nuclear power plants. It operated in high temperature, high-pressure, high speed and radiative environment, so a long-term security and reliable operations is required. Many internal flow analysis of RCPs was carried out, mainly foucs on steady and unsteady flow field at different operating points in RCP. The research about flow passage components, such as the blade of the RCP, is relatively few. When the RCPs operates in the nuclear power plant, the flow field lashed against the impeller of the RCP, results in a network of small cracks is found on the surface of impeller. For example, periodic vibration caused by a break in a guide vane leaded to cracking of two pieces blades of impeller in a large power plant in southwest of China, and this accident caused much economic loss. The computational method of stress due to the hydraulic reason is an important problem of the RCP. In this work, at first the CFD simulation including the case, guide vane, impeller, inlet and outlet at different operation points is studied, and the result of the pressure distribution on impeller blade is loaded on the impeller using fluid-structure interation (FSI) method. The result showed that the maximum von Mises stress appears on the trailing edge close to the impeller hub which has a large change in gradient of stress and which is prone to fatigue failure. The maximum stress on the impeller is mainly in proportion to the operating power. The maximum stress on the impeller have periodical characteristic, which is due to the number of blade of diffuser. All of these equip us with better understand of the fatigue and fracture of RCP, and it make sense to protect the fatigue damage and promote the stability of RCP.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In