0

Full Content is available to subscribers

Subscribe/Learn More  >

Helical Pitch Optimization of Double-Tube Once-Through Steam Generator

[+] Author Affiliations
Huawei Fang, Xinyu Wei, Shoujun Yan, Jiashuang Wan, Fuyu Zhao

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. ICONE22-30468, pp. V02AT09A061; 12 pages
doi:10.1115/ICONE22-30468
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2A: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4590-5
  • Copyright © 2014 by ASME

abstract

Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. The heat transfer performance of DOTSG is studied in this paper. In order to minimize the DOTSG volume and reduce the pressure drop of coolant, the pitch of inner helical tube is optimized with Pontryagin Maximum Principle (PMP). The double-tube is divided to three regions according to the coolant phase in secondary side. With given heat transfer load, choosing a combination function of minimum tube length and minimum pressure drop constructed with linear weighted method as objective function, the pitch optimization proceeds from superheated region to boiling region, and then to sub-cooled region in sequence, using Maximum Principle and gradient method. Then the pitch and temperature distribution along the axis is obtained respectively. The results show that the optimal pitch keeps constant along the axial direction in sub-cooled region and superheated region, but varies in boiling region. In boiling region, compared with minimum tube length optimization, the optimal tube length is 6.4% longer while the pressure drop is 36.3% smaller; and compared with minimum pressure drop optimization, the optimal pressure drop is 29.1% larger while the optimal tube length is 4.6% smaller. With the optimal pitch, the temperature distribution is in agreement with the general physic rules, which proves the correctness and the feasibility of the Maximum Principle method used for the structural optimization of DOTSG in this paper.

Copyright © 2014 by ASME
Topics: Boilers , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In